# Summation of Double Sequences and Selection Principles 

Nebojša Elez ${ }^{\text {a }}$, Dragan Djurčić ${ }^{\text {b }}$, Aleksandar Šebeković ${ }^{\text {b }}$<br>${ }^{a}$ University of East Sarajevo, Faculty of Philosophy, Alekse Šantića 1, 71420 Pale, Bosnia and Hercegovina<br>${ }^{b}$ University in Kragujevac, Faculty of Technical Sciences Čačak, Svetog Save 65, 32000 Čačak, Serbia


#### Abstract

This paper proves some selection properties of a class of positive real double sequences which converge to 0 in the sense of Pringsheim (see, e.g. [10]).


## 1. Introduction

For a real double sequence $x=\left(x_{m, n}\right)$ we say that it is convergent to 0 in the sense of Pringsheim (denoted by $P-\lim x=0$ ) [10] if

$$
\begin{equation*}
\lim _{\min \{m, n\} \rightarrow+\infty} x_{m, n}=0 \tag{1}
\end{equation*}
$$

Denote the class of such double sequences by $c_{2}^{0}$ and the class of such positive double sequences by $c_{2,+}^{0}$ (see [2]).

Theory of double sequences (in particular, theory of convergence of double sequences in Pringsheim's sense) is important current part of mathematical analysis and other mathematical disciplines (see, e.g. [ $6,7,9,11]$ ).

Let $x=\left(x_{m, n}\right)$ be a double sequence of real numbers. Then:
$1^{\circ} \omega^{(d)}(x)=\left(\omega_{n}^{(d)}(x)\right)$ is the Landau-Hurwicz sequence of $x$, if

$$
\omega_{n}^{(d)}(x)=\sup \left\{\left|x_{k, l}-x_{r, s}\right| \mid k \geq n, l \geq n, r \geq n \text { and } s \geq n\right\}
$$

for all $n \in \mathbb{N}$ (see [1]);
$2^{\circ} S_{1}^{*}(x)=\left(S_{n}(x)\right)$, where $S_{n}(x)=\sum_{k=1}^{n}\left(\sum_{l=1}^{n} x_{k, l}\right)$ for $n \in \mathbb{N}$, is the sequence which represents the diagonal series of $x$;
$3^{\circ} x$ is with finite diagonal sum, if there exists $S_{1}^{(x)} \in \mathbb{R}$ such that $S_{1}^{(x)}=\lim _{n \rightarrow+\infty} S_{n}(x)$ (denoted by $S_{1}^{(x)}=\sum x$ );

[^0]$4^{\circ} S_{2}^{*}(x)=\left(S_{m, n}(x)\right)$, where $S_{m, n}(x)=\sum_{k=1}^{m}\left(\sum_{l=1}^{n} x_{k, l}\right)$ for $m \in \mathbb{N}$ and $n \in \mathbb{N}$, is the double sequence which represents the double series of $x$;
$5^{\circ} x$ is with finite sum in the Pringsheim sense, if there exists $S_{2}^{(x)} \in \mathbb{R}$ such that $S_{2}^{(x)}=P$ - $\lim S_{2}^{*}(x)$ (denoted by $\left.S_{2}^{(x)}=P-\sum x\right) ;$

Let us take a double sequence $x=\left(x_{m, n}\right)$ of positive real numbers (denoted by $\left.x \in \mathbb{S}_{2}\right)$. Then:
$6^{\circ} x$ is an element of a class $l_{2}^{1}$ if $S_{1}^{(x)} \in \mathbb{R}$ and $x$ is an element of a class $P-l_{2}^{1}$ if $S_{2}^{(x)} \in \mathbb{R}$;
$7^{\circ} x$ is an element of a class $l_{2, \operatorname{Tr}\left(R_{-\infty, S}\right)}^{1}$ if $x \in l_{2}^{1}$ and $\omega^{(d)}\left(S_{2}^{*}(x)\right) \in \operatorname{Tr}\left(R_{-\infty, S}\right)$.
Remark 1.1. (a) For a sequence $a=\left(a_{n}\right)$ of positive numbers we say that it is translationally rapidly varying in the sense of de Haan with the index of variability $-\infty$, if

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{a_{[n+\alpha]}}{a_{n}}=0 \tag{2}
\end{equation*}
$$

for every $\alpha \geq 1$ (the class of such sequences is denoted by $\operatorname{Tr}\left(R_{-\infty, S}\right)$ ). Such sequences are important objects in asymptotic analysis (see, e.g. [3]). It holds that the class $\operatorname{Tr}\left(R_{-\infty, s}\right)$ is a proper subclass of the class of positive real sequences which converge to 0 .
(b) For a double sequence $x$ of positive real numbers it holds that $x$ converges in Pringsheim's sense in $\mathbb{R}$ if and only if $\omega_{n}^{(d)}(x) \rightarrow 0$, for $n \rightarrow+\infty$ (see [1]).
(c) For a sequence $b=\left(b_{n}\right)$ of real numbers the sequence $\omega(b)=\left(\omega_{n}(b)\right)$ is the Landau-Hurwicz sequence, if $\omega_{n}(b)=\sup \left\{\left|b_{k}-b_{r}\right| \mid k \geq n\right.$ and $\left.r \geq n\right\}$ for every $n \in \mathbb{N}$ (see [4]). The fact $\omega^{(d)}\left(S_{2}^{*}(x)\right) \in \operatorname{Tr}\left(R_{-\infty, s}\right)$ from $6^{\circ}$ is equal to the fact that $\omega\left(S_{1}^{*}(x)\right) \in \operatorname{Tr}\left(R_{-\infty, s}\right)$.
Proposition 1.2. Let $x=\left(x_{m, n}\right) \in \mathbb{S}_{2}$. For $S \in(0,+\infty)$ it holds that $S=P$ - $\sum x$ if and only if $S=\sum x$.
Proof.
$(\Rightarrow)$ Let $S \in(0,+\infty)$ and $S=P-\sum x$. Then for $\varepsilon>0$ there exists $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $S-S_{m, n}(x) \leq \varepsilon$ for every $m \geq n_{0}$ and every $n \geq n_{0}$. So, for $n \geq n_{0}$ we have $S-S_{n, n}(x) \leq \varepsilon$, so $S=\sum x$.
$(\Leftarrow)$ Let $S \in(0,+\infty)$ and $S=\sum x$. Then for every $\varepsilon>0$ there is $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $S-S_{n, n}(\varepsilon)(x) \leq \varepsilon$ for every $n \geq n_{0}$. For $k, l \in\{0\} \cup \mathbb{N}$ it holds

$$
\begin{aligned}
0 & <S-S_{n_{0}+\max \{l, k\}, n_{0}+\max \{l, k\}}(x) \leq S-S_{n_{0}+k, n_{0}+l}(x) \\
& \leq S-S_{n_{0}+\min \{l, k\}, n_{0}+\min \{l, k\}}(x) \leq \varepsilon,
\end{aligned}
$$

so $S=P-\sum x$.
Proposition 1.3. Let $x=\left(x_{m, n}\right) \in \mathbb{S}_{2}$. If $\sum x$ is an element of $\mathbb{R}\left(x \in l_{2}^{1}\right)$, then $P-\lim x=0$. The converse need not be true.
Proof. If $x \in \mathbb{S}_{2}$ and $x \in l_{2}^{1}$, then for every $\varepsilon>0$ there exists $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
V_{n}(x)=x_{1, n}+x_{2, n}+\cdots+x_{n, n}+x_{n, n-1}+\cdots+x_{n, 2}+x_{n, 1} \leq \varepsilon
$$

for every $n \geq n_{0}$. So, for every $k, l \in\{0\} \cup \mathbb{N}$ it holds that $x_{n_{0}+k, n_{0}+l} \leq \varepsilon$, i.e. $x \in c_{2,+}^{0}$.
Now, let us observe that the double sequence $x=\left(x_{m, n}\right)$, where $x_{m, n}=\frac{1}{\max \{m, n\}}$ for $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Then $\sum x>\sum_{n=1}^{+\infty} \frac{1}{n}=+\infty$, so the double sequence $x$ does not have finite diagonal sum. On the other side, $x \in c_{2,+}^{0}$, because for every $\varepsilon>0$ there exists $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ (let say $n_{0}=\left[\frac{1}{\varepsilon}\right]+1$ ), such that $x_{m, n} \leq \varepsilon$ for every $m \geq n_{0}$ and every $n \geq n_{0}$.

Corollary 1.4. Let $x=\left(x_{m, n}\right) \in \mathbb{S}_{2}$. If $P-\sum x$ is an element of $\mathbb{R}\left(x \in P-l_{2}^{1}\right)$, then $P-\lim x=0$. The converse need not be true.

Let $\mathcal{A}$ and $\mathcal{B}$ be non-empty subsets from $\mathbb{S}_{2}$. Let us define the following selection principles (see, e.g. [5] and [1]):
(a) $S_{1}^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for every double sequence $\left(A_{m, n}\right)$ of elements from $\mathcal{A}$ there exists an element $B$ from $\mathcal{B}$ such that $B=\left(b_{m, n}\right)$ and $b_{m, n} \in A_{m, n}$ for every $m, n \in \mathbb{N}$;
(b) $\alpha^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for every double sequence $\left(A_{m, n}\right)$ of elements from $\mathcal{A}$ there exists an element $B \in \mathcal{B}$ such that the set $B \cap A_{m, n}$ is infinite for every $m, n \in \mathbb{N}$;
(c) $S_{1}^{\varphi}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for every sequence $\left(A_{t}\right)$ of elements from $\mathcal{A}$ there exists an element $B$ from $\mathcal{B}$ such that $B=\left(b_{m, n}\right)$ and $b_{m, n} \in A_{t}$ for $t=\varphi(m, n)$, where $\varphi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is an in advance given bijection.

## 2. Main Results

The following propositions improve results given in [1] and [5].
Proposition 2.1. The selection principle $S_{1}^{(d)}\left(c_{2,+}^{0}, l_{2, \operatorname{Tr}\left(R_{-\infty, S}\right)}^{1}\right)$ is satisfied.
Proof. Let a double sequence of double sequences $\left(x_{m, n, k, l}\right)$ be given, where for every $\left(k_{0}, l_{0}\right) \in \mathbb{N} \times \mathbb{N}$ it holds $x^{\left(k_{0}, l_{0}\right)}=\left(x_{\left.m, n, k_{0}, l_{0}\right)}\right) \in c_{2,+}^{0}$. Let us create the double sequence $y=\left(y_{k, l}\right)$ in the following way:
(step 1) take $y_{1,1}$ from the double sequence $x^{(1,1)}$ so that $y_{1,1} \leq 1$;
(step 2) for $(k, l) \in\{(1,2),(2,2),(2,1)\}$ take $y_{k, l}$ from the double sequence $x^{(k, l)}$ so that $y_{k, l} \leq \frac{1}{2^{2}} \cdot \frac{V_{1}(y)}{2 \cdot 2-1}$;
(step $n, n \geq 3$ ) for $(k, l) \in\{(1, n),(2, n), \ldots,(n, n), \ldots,(n, 2),(n, 1)\}$ take $y_{k, l}$ from the double sequence $x^{(k, l)}$ such that $y_{k, l} \leq \frac{1}{n^{2}} \cdot \frac{V_{n-1}(y)}{2 n-1}$. We have that $y$ is a double sequence of positive real numbers and that for every $n \in \mathbb{N}$ it holds $S_{n, n}(y) \leq 1+\cdots+\frac{1}{n^{2}}$, because $S_{n, n}(y)=\sum_{p=1}^{n} V_{p}(y)$. So, there exists $S_{1}^{(y)}>0$ such that $S_{1}^{(y)}=\lim _{n \rightarrow+\infty} S_{n, n}(y)$, so $y \in l_{2}^{1}$. Let us observe now that $\omega^{(d)}\left(S_{2}^{*}(y)\right)=\left(\omega_{n}^{(d)}\left(S_{2}^{*}(y)\right)\right)$. Then for every $n \in \mathbb{N}$ it holds $\omega_{n}^{(d)}\left(S_{2}^{*}(y)\right)=S_{1}^{(y)}-S_{n}(y)$. Also, for sufficiently large $n \in \mathbb{N}$ the following holds:

$$
\begin{aligned}
\frac{\omega_{n+1}^{(d)}\left(S_{2}^{*}(y)\right)}{\omega_{n}^{(d)}\left(S_{2}^{*}(y)\right)} & =\frac{S_{1}^{(y)}-S_{n+1}(y)}{S_{1}^{(y)}-S_{n}(y)}=1-\frac{S_{n+1}(y)-S_{n}(y)}{S_{1}^{(y)}-S_{n}(y)}= \\
& =1-\frac{V_{n+1}(y)}{V_{n+1}(y)+V_{n+2}(y)+\cdots}=1-\frac{1}{1+\frac{V_{n+2}(y)}{V_{n+1}(y)}+\frac{V_{n+3}(y)}{V_{n+1}(y)}+\cdots}= \\
& =1-\frac{1}{1+\frac{V_{n+2}(y)}{V_{n+1}(y)}+\frac{V_{n+3}(y)}{V_{n+2}(y)} \cdot \frac{V_{n+2}(y)}{V_{n+1}(y)}+\cdots} \leq \\
& \leq 1-\frac{1}{1+\frac{V_{n+2}(y)}{V_{n+1}(y)}+\frac{V_{n+3}(y)}{V_{n+2}(y)}+\cdots}
\end{aligned}
$$

Here we used the fact that the series $\sum_{n=1}^{+\infty} \frac{V_{n+1}(y)}{V_{n}(y)}$ is convergent and because of that $\sum_{k=n}^{+\infty} \frac{V_{k+1}(y)}{V_{k}(y)} \rightarrow 0$ for $n \rightarrow+\infty$. Thus, the following holds:

$$
\lim _{n \rightarrow+\infty} \frac{\omega_{n+1}^{(d)}\left(S_{2}^{*}(y)\right)}{\omega_{n}^{(d)}\left(S_{2}^{*}(y)\right)}=0,
$$

so $\omega^{(d)}\left(S_{2}^{*}(y)\right) \in \operatorname{Tr}\left(R_{-\infty, S}\right)$. Thus, $y \in l_{2, \operatorname{Tr}\left(R_{-\infty, S}\right)}^{1}$. From Proposition 1.3 it follows $y \in c_{2,+}^{0}$ and from the construction of the double sequence $y$ it follows that $y_{k, l} \in x^{(k, l)}$ for every $(k, l) \in \mathbb{N} \times \mathbb{N}$. This ends the proof.

Corollary 2.2. The selection principle $S_{1}^{(d)}\left(c_{2,+}^{0}, l_{2}^{1}\right)$ is satisfied.
Remark 2.3. From Proposition 1.2 and Corollary 2.2 it follows that the selection principle $S_{1}^{(d)}\left(c_{2,+}^{0}, P-l_{2}^{1}\right)$ is satisfied.
Proposition 2.4. The selection principle $\alpha_{2}^{(d)}\left(c_{2,+}^{0}, l_{2}^{1}\right)$ is satisfied.
Proof. Let $\left(x_{m, n, k, l}\right)$ be a double sequence of double sequences with properties as in the proof of Proposition 2.1. Let us sort it (applying some of standard methods) into a sequence of double sequences ( $x_{m, n, r}$ ), where for every $r_{0} \in \mathbb{N}$ it is fulfilled $x^{\left(r_{0}\right)}=\left(x_{m, n, r_{0}}\right) \in c_{2,+}^{0}$. Let form the double sequence $y=\left(y_{s, t}\right)$ in the following way:
(step 1) let $y_{0}=\left(y_{s, t}^{(0)}\right)$ be a double sequence such that for every $(s, t) \in \mathbb{N} \times \mathbb{N}$ it holds $0<y_{s, t}^{(0)} \leq \frac{1}{M^{2}(2 M-1)}$, where $M=\max \{s, t\}$;
(step 2) let $\left(p_{r}\right)$ be a sequence of prime numbers in ascending order, where $p_{1}=2$. For $r \in \mathbb{N}$ form the double sequence $y_{r}=\left(y_{s, t}^{(r)}\right)$ by making changes in the double sequence $y_{r-1}$ at positions $\left(p_{r}^{\varphi_{r}(g)}, p_{r}^{\varphi_{r}(g)}\right), g \in \mathbb{N}$ (where $\varphi_{r}: \mathbb{N} \rightarrow \mathbb{N}$ is a bijection such that the sequence $\sum_{g=1}^{+\infty} x_{p_{r}^{q_{r}(g)}, p_{r}^{\varphi_{r}(g)}, r}$ is convergent and $\leq \frac{1}{r^{2}}$ ), in the following way: replace elements in $y_{r-1}$ at the mentioned positions with elements from the double sequence $x^{(r)}$ at the same positions, respectively.

Let $y=\lim _{r \rightarrow+\infty} y_{r}$. Then the double sequence $y=\left(y_{s, t}\right) \in c_{2,+}^{0}$ and $y \in l_{2}^{1}$. According to the construction of $y$ there are infinitely many common elements of $y$ with every double sequence $x^{(r)}, r \in \mathbb{N}$, at the same positions, which ends this proof.

## Remark 2.5.

(a) According to Propositions 1.2 and 2.4 the selection principle $\alpha_{2}^{(d)}\left(c_{2,+}^{0}, P-l_{2}^{1}\right)$ is satisfied.
(b) Also, selection principles $\alpha_{j}^{(d)}\left(c_{2,+}^{0}, \mathcal{B}\right)$ are satisfied for $\mathcal{B} \in\left\{l_{2}^{1}, P-l_{2}^{1}\right\}$ and $i \in\{3,4\}$, as well as selection principles $\alpha_{j}\left(c_{2,+}^{0}, \mathcal{B}\right)$ for $j \in\{2,3,4\}$ (about these selection principles see [1] and [8]).

Proposition 2.6. The selection principle $S_{1}^{\varphi}\left(c_{2,+}^{0}, l_{2}^{1}\right)$ is satisfied.
Proof. Let $\varphi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a bijection and let a sequence of double sequences ( $x_{m, n, r}$ ) be given, where for every $r_{0} \in \mathbb{N}, x^{\left(r_{0}\right)}=\left(x_{m, n, r_{0}}\right) \in c_{2,+}^{0}$ is fulfilled. Create the double sequence $y=\left(y_{s, t}\right)$ in the following way:

Let arbitrary $r \in \mathbb{N}$ be fixed. Also, let $(s(r), t(r))=\varphi^{-1}(r)$ and let $M(r)=\max \{s(r), t(r)\}$. There exists $n_{0}(r) \in \mathbb{N}$ such that $x_{n_{0}(r), n_{0}(r), r} \leq \frac{1}{M^{2}(r)(2 M(r)-1)}$. Take $y_{s(r), t(r)}=x_{n_{0}(r), n_{0}(r), r}$, for $r \in \mathbb{N}$, and in that way create the double sequence $\left(y_{s(r), t(r)}\right)$. It follows that $y \in c_{2,+}^{0}$ and $y \in l_{2}^{1}$. According to the construction of double sequence $y$ it follows that $y$ and $x^{(r)}$ have exactly one common element for each $r \in \mathbb{N}$. This ends the proof.

Remark 2.7. According to Propositions 1.2 and 2.6 the selection principle $S_{1}^{\varphi}\left(c_{2,+}^{0}, P-l_{2}^{1}\right)$ holds.

## References

[1] A. Caserta, D. Djurčić, M. Mitrović, Selection principles and double sequences II, Hacettepe J. Math. Stat., to appear.
[2] D. Djurčić, M.R. Žižović, A. Petojević, Note on selection principles of Kočinac, Filomat 26 (2012), $1291-1295$.
[3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology Appl. 156 (2008), 46-55.
[4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, On the class $\$_{\underline{0}}$ of real sequences, Appl. Math. Letters 25 (2012), 1296-1298.
[5] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Double sequences and selections, Abst. Appl. Anal. 2012 (2012), Article ID 497594, 6 pages.
[6] E.W. Hobson, The theory of functions of a real variable, Vol. 2, Cambridge University Press, Cambridge, UK, 2nd. edition, 1926.
[7] K. Kayduman, C. Çakan, The Cesaro core of double sequences, Abst. Appl. Anal. 2011 (2011), Article ID 950364, 9 pages.
[8] Lj.D.R. Kočinac, On the $\alpha_{i}$-selection principles and games, Contem. Math. 533 (2011), 107-124.
[9] R.F. Patterson, E. Savaş, A cathegory theorem for double sequences, Appl. Math. Letters 24 (2011), 1680-1684.
[10] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
[11] E. Savaş, $\left(A_{\sigma}\right)$-double sequence spaces defined by Orlicz function and double statistical convergence, Comput. \& Math. Appl. 55 (2008), 1293-1301.


[^0]:    2010 Mathematics Subject Classification. Primary 40A05, 54A20
    Keywords. Pringsheim convergence, selection principles, translationally rapidly varying sequence.
    Received: 16 October 2013; Accepted: 01 December 2013
    Communicated by Dragan S. Djordjević
    This paper is supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Grant No. 174026.

    Email addresses: jasnaelez@gmail.com (Nebojša Elez), dragan.djurcic@tfc.kg.ac.rs (Dragan Djurčić),
    aleksandar.sebekovic@ftn.kg.ac.rs (Aleksandar Šebeković)

