Filomat 29:4 (2015), 781–785 DOI 10.2298/FIL1504781E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Summation of Double Sequences and Selection Principles

Nebojša Elez^a, Dragan Djurčić^b, Aleksandar Šebeković^b

^aUniversity of East Sarajevo, Faculty of Philosophy, Alekse Šantića 1, 71420 Pale, Bosnia and Hercegovina ^bUniversity in Kragujevac, Faculty of Technical Sciences Čačak, Svetog Save 65, 32000 Čačak, Serbia

Abstract. This paper proves some selection properties of a class of positive real double sequences which converge to 0 in the sense of Pringsheim (see, e.g. [10]).

1. Introduction

For a real double sequence $x = (x_{m,n})$ we say that it is convergent to 0 in the sense of Pringsheim (denoted by *P*-lim x = 0) [10] if

$$\lim_{\min\{m,n\}\to+\infty} x_{m,n} = 0.$$
(1)

Denote the class of such double sequences by c_2^0 and the class of such positive double sequences by $c_{2,+}^0$ (see [2]).

Theory of double sequences (in particular, theory of convergence of double sequences in Pringsheim's sense) is important current part of mathematical analysis and other mathematical disciplines (see, e.g. [6, 7, 9, 11]).

Let $x = (x_{m,n})$ be a double sequence of real numbers. Then:

1° $\omega^{(d)}(x) = (\omega_n^{(d)}(x))$ is the Landau-Hurwicz sequence of *x*, if

$$\omega_n^{(a)}(x) = \sup\{|x_{k,l} - x_{r,s}| \mid k \ge n, \ l \ge n, \ r \ge n \text{ and } s \ge n\}$$

for all $n \in \mathbb{N}$ (see [1]);

2° $S_1^*(x) = (S_n(x))$, where $S_n(x) = \sum_{k=1}^n \left(\sum_{l=1}^n x_{k,l}\right)$ for $n \in \mathbb{N}$, is the sequence which represents the diagonal series of x;

3° *x* is with finite diagonal sum, if there exists $S_1^{(x)} \in \mathbb{R}$ such that $S_1^{(x)} = \lim_{n \to +\infty} S_n(x)$ (denoted by $S_1^{(x)} = \sum x$);

²⁰¹⁰ Mathematics Subject Classification. Primary 40A05, 54A20

Keywords. Pringsheim convergence, selection principles, translationally rapidly varying sequence.

Received: 16 October 2013; Accepted: 01 December 2013

Communicated by Dragan S. Djordjević

This paper is supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Grant No. 174026.

Email addresses: jasnaelez@gmail.com (Nebojša Elez), dragan.djurcic@tfc.kg.ac.rs (Dragan Djurčić), aleksandar.sebekovic@ftn.kg.ac.rs (Aleksandar Šebeković)

- 4° $S_2^*(x) = (S_{m,n}(x))$, where $S_{m,n}(x) = \sum_{k=1}^m \left(\sum_{l=1}^n x_{k,l}\right)$ for $m \in \mathbb{N}$ and $n \in \mathbb{N}$, is the double sequence which represents the double series of x;
- 5° *x* is with finite sum in the Pringsheim sense, if there exists $S_2^{(x)} \in \mathbb{R}$ such that $S_2^{(x)} = P$ -lim $S_2^*(x)$ (denoted by $S_2^{(x)} = P \sum x$);
- Let us take a double sequence $x = (x_{m,n})$ of positive real numbers (denoted by $x \in S_2$). Then:
- 6° x is an element of a class l_2^1 if $S_1^{(x)} \in \mathbb{R}$ and x is an element of a class P- l_2^1 if $S_2^{(x)} \in \mathbb{R}$;
- 7° *x* is an element of a class $l_{2,\operatorname{Tr}(R_{-\infty},s)}^1$ if $x \in l_2^1$ and $\omega^{(d)}(S_2^*(x)) \in \operatorname{Tr}(R_{-\infty,S})$.
- **Remark 1.1.** (*a*) For a sequence $a = (a_n)$ of positive numbers we say that it is translationally rapidly varying in the sense of de Haan with the index of variability $-\infty$, if

$$\lim_{n \to +\infty} \frac{a_{[n+\alpha]}}{a_n} = 0 \tag{2}$$

for every $\alpha \ge 1$ (the class of such sequences is denoted by $\text{Tr}(R_{-\infty,5})$). Such sequences are important objects in asymptotic analysis (see, e.g. [3]). It holds that the class $\text{Tr}(R_{-\infty,S})$ is a proper subclass of the class of positive real sequences which converge to 0.

- (b) For a double sequence x of positive real numbers it holds that x converges in Pringsheim's sense in \mathbb{R} if and only if $\omega_n^{(d)}(x) \to 0$, for $n \to +\infty$ (see [1]).
- (c) For a sequence $b = (b_n)$ of real numbers the sequence $\omega(b) = (\omega_n(b))$ is the Landau-Hurwicz sequence, if $\omega_n(b) = \sup\{|b_k b_r| \mid k \ge n \text{ and } r \ge n\}$ for every $n \in \mathbb{N}$ (see [4]). The fact $\omega^{(d)}(S_2^*(x)) \in \operatorname{Tr}(R_{-\infty,s})$ from 6° is equal to the fact that $\omega(S_1^*(x)) \in \operatorname{Tr}(R_{-\infty,s})$.

Proposition 1.2. Let $x = (x_{m,n}) \in S_2$. For $S \in (0, +\infty)$ it holds that $S = P - \sum x$ if and only if $S = \sum x$.

Proof.

- (⇒) Let $S \in (0, +\infty)$ and $S = P \sum x$. Then for $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $S S_{m,n}(x) \le \varepsilon$ for every $m \ge n_0$ and every $n \ge n_0$. So, for $n \ge n_0$ we have $S S_{n,n}(x) \le \varepsilon$, so $S = \sum x$.
- (⇐) Let $S \in (0, +\infty)$ and $S = \sum x$. Then for every $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $S S_{n,n}(\varepsilon)(x) \le \varepsilon$ for every $n \ge n_0$. For $k, l \in \{0\} \cup \mathbb{N}$ it holds

$$\begin{aligned} 0 &< S - S_{n_0 + \max\{l,k\}, n_0 + \max\{l,k\}}(x) \le S - S_{n_0 + k, n_0 + l}(x) \\ &\le S - S_{n_0 + \min\{l,k\}, n_0 + \min\{l,k\}}(x) \le \varepsilon, \end{aligned}$$

so
$$S = P - \sum x$$
. \Box

Proposition 1.3. Let $x = (x_{m,n}) \in \mathbb{S}_2$. If $\sum x$ is an element of \mathbb{R} ($x \in l_2^1$), then P-lim x = 0. The converse need not be true.

Proof. If $x \in S_2$ and $x \in l_2^1$, then for every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that

 $V_n(x) = x_{1,n} + x_{2,n} + \dots + x_{n,n} + x_{n,n-1} + \dots + x_{n,2} + x_{n,1} \le \varepsilon$

for every $n \ge n_0$. So, for every $k, l \in \{0\} \cup \mathbb{N}$ it holds that $x_{n_0+k,n_0+l} \le \varepsilon$, i.e. $x \in c_{2+}^0$.

Now, let us observe that the double sequence $x = (x_{m,n})$, where $x_{m,n} = \frac{1}{\max\{m,n\}}$ for $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Then $\sum x > \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$, so the double sequence x does not have finite diagonal sum. On the other side,

 $x \in c_{2,+}^0$, because for every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ (let say $n_0 = \lfloor \frac{1}{\varepsilon} \rfloor + 1$), such that $x_{m,n} \le \varepsilon$ for every $m \ge n_0$ and every $n \ge n_0$. \Box

Corollary 1.4. Let $x = (x_{m,n}) \in \mathbb{S}_2$. If $P - \sum x$ is an element of \mathbb{R} ($x \in P - l_2^1$), then $P - \lim x = 0$. The converse need not be true.

Let \mathcal{A} and \mathcal{B} be non-empty subsets from S_2 . Let us define the following selection principles (see, e.g. [5] and [1]):

- (a) $S_1^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for every double sequence $(A_{m,n})$ of elements from \mathcal{A} there exists an element *B* from \mathcal{B} such that $B = (b_{m,n})$ and $b_{m,n} \in A_{m,n}$ for every $m, n \in \mathbb{N}$;
- (b) $\alpha^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for every double sequence $(A_{m,n})$ of elements from \mathcal{A} there exists an element $B \in \mathcal{B}$ such that the set $B \cap A_{m,n}$ is infinite for every $m, n \in \mathbb{N}$;
- (c) $S_1^{\varphi}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for every sequence (A_t) of elements from \mathcal{A} there exists an element B from \mathcal{B} such that $B = (b_{m,n})$ and $b_{m,n} \in A_t$ for $t = \varphi(m, n)$, where $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is an in advance given bijection.

2. Main Results

The following propositions improve results given in [1] and [5].

Proposition 2.1. The selection principle $S_1^{(d)}(c_{2,+}^0, l_{2,\text{Tr}(R_{\text{res}})}^1)$ is satisfied.

Proof. Let a double sequence of double sequences $(x_{m,n,k,l})$ be given, where for every $(k_0, l_0) \in \mathbb{N} \times \mathbb{N}$ it holds $x^{(k_0, l_0)} = (x_{m,n,k_0, l_0}) \in c_{2,+}^0$. Let us create the double sequence $y = (y_{k,l})$ in the following way:

(step 1) take $y_{1,1}$ from the double sequence $x^{(1,1)}$ so that $y_{1,1} \leq 1$;

(step 2) for $(k, l) \in \{(1, 2), (2, 2), (2, 1)\}$ take $y_{k,l}$ from the double sequence $x^{(k,l)}$ so that $y_{k,l} \le \frac{1}{2^2} \cdot \frac{V_1(y)}{2\cdot 2-1}$;

(step $n, n \ge 3$) for $(k, l) \in \{(1, n), (2, n), \dots, (n, n), \dots, (n, 2), (n, 1)\}$ take $y_{k,l}$ from the double sequence $x^{(k,l)}$ such that $y_{k,l} \le \frac{1}{n^2} \cdot \frac{V_{n-1}(y)}{2n-1}$. We have that y is a double sequence of positive real numbers and that for every $n \in \mathbb{N}$ it holds $S_{n,n}(y) \le 1 + \dots + \frac{1}{n^2}$, because $S_{n,n}(y) = \sum_{p=1}^{n} V_p(y)$. So, there exists $S_1^{(y)} > 0$ such that $S_1^{(y)} = \lim_{n \to +\infty} S_{n,n}(y)$, so $y \in l_2^1$. Let us observe now that $\omega^{(d)}(S_2^*(y)) = (\omega_n^{(d)}(S_2^*(y)))$. Then for every $n \in \mathbb{N}$ it holds $\omega_n^{(d)}(S_2^*(y)) = S_1^{(y)} - S_n(y)$. Also, for sufficiently large $n \in \mathbb{N}$ the following holds:

$$\begin{split} \frac{\omega_{n+1}^{(d)}(S_2^*(y))}{\omega_n^{(d)}(S_2^*(y))} &= \frac{S_1^{(y)} - S_{n+1}(y)}{S_1^{(y)} - S_n(y)} = 1 - \frac{S_{n+1}(y) - S_n(y)}{S_1^{(y)} - S_n(y)} = \\ &= 1 - \frac{V_{n+1}(y)}{V_{n+1}(y) + V_{n+2}(y) + \dots} = 1 - \frac{1}{1 + \frac{V_{n+2}(y)}{V_{n+1}(y)} + \frac{V_{n+3}(y)}{V_{n+1}(y)} + \dots} = \\ &= 1 - \frac{1}{1 + \frac{V_{n+2}(y)}{V_{n+1}(y)} + \frac{V_{n+3}(y)}{V_{n+2}(y)} \cdot \frac{V_{n+2}(y)}{V_{n+1}(y)} + \dots} \le \\ &\leq 1 - \frac{1}{1 + \frac{V_{n+2}(y)}{V_{n+1}(y)} + \frac{V_{n+3}(y)}{V_{n+2}(y)} + \dots}. \end{split}$$

Here we used the fact that the series $\sum_{n=1}^{+\infty} \frac{V_{n+1}(y)}{V_n(y)}$ is convergent and because of that $\sum_{k=n}^{+\infty} \frac{V_{k+1}(y)}{V_k(y)} \to 0$ for $n \to +\infty$. Thus, the following holds:

$$\lim_{n \to +\infty} \frac{\omega_{n+1}^{(d)}(S_2^*(y))}{\omega_n^{(d)}(S_2^*(y))} = 0$$

so $\omega^{(d)}(S_2^*(y)) \in \text{Tr}(R_{-\infty,S})$. Thus, $y \in l^1_{2,\text{Tr}(R_{-\infty,S})}$. From Proposition 1.3 it follows $y \in c^0_{2,+}$ and from the construction of the double sequence y it follows that $y_{k,l} \in x^{(k,l)}$ for every $(k,l) \in \mathbb{N} \times \mathbb{N}$. This ends the proof. \Box

Corollary 2.2. The selection principle $S_1^{(d)}(c_{2+}^0, l_2^1)$ is satisfied.

Remark 2.3. From Proposition 1.2 and Corollary 2.2 it follows that the selection principle $S_1^{(d)}(c_{2+}^0, P-l_2^1)$ is satisfied.

Proposition 2.4. The selection principle $\alpha_2^{(d)}(c_{2,+}^0, l_2^1)$ is satisfied.

Proof. Let $(x_{m,n,k,l})$ be a double sequence of double sequences with properties as in the proof of Proposition 2.1. Let us sort it (applying some of standard methods) into a sequence of double sequences $(x_{m,n,r})$, where for every $r_0 \in \mathbb{N}$ it is fulfilled $x^{(r_0)} = (x_{m,n,r_0}) \in c_{2,+}^0$. Let form the double sequence $y = (y_{s,t})$ in the following way:

(step 1) let $y_0 = (y_{s,t}^{(0)})$ be a double sequence such that for every $(s, t) \in \mathbb{N} \times \mathbb{N}$ it holds $0 < y_{s,t}^{(0)} \le \frac{1}{M^2(2M-1)}$, where $M = \max\{s, t\}$;

(step 2) let (p_r) be a sequence of prime numbers in ascending order, where $p_1 = 2$. For $r \in \mathbb{N}$ form the double sequence $y_r = (y_{s,t}^{(r)})$ by making changes in the double sequence y_{r-1} at positions $(p_r^{\varphi_r(g)}, p_r^{\varphi_r(g)}), g \in \mathbb{N}$ (where

 $\varphi_r : \mathbb{N} \to \mathbb{N}$ is a bijection such that the sequence $\sum_{g=1}^{+\infty} x_{p_r^{\varphi_r(g)}, p_r^{\varphi_r(g)}, r}$ is convergent and $\leq \frac{1}{r^2}$), in the following

way: replace elements in y_{r-1} at the mentioned positions with elements from the double sequence $x^{(r)}$ at the same positions, respectively.

Let $y = \lim_{r \to +\infty} y_r$. Then the double sequence $y = (y_{s,t}) \in c_{2,+}^0$ and $y \in l_2^1$. According to the construction of *y* there are infinitely many common elements of *y* with every double sequence $x^{(r)}$, $r \in \mathbb{N}$, at the same positions, which ends this proof. \Box

Remark 2.5.

- (a) According to Propositions 1.2 and 2.4 the selection principle $\alpha_2^{(d)}(c_{2,+}^0, P-l_2^1)$ is satisfied.
- (b) Also, selection principles $\alpha_j^{(d)}(c_{2,+}^0, \mathcal{B})$ are satisfied for $\mathcal{B} \in \{l_2^1, P-l_2^1\}$ and $i \in \{3, 4\}$, as well as selection principles $\alpha_j(c_{2,+}^0, \mathcal{B})$ for $j \in \{2, 3, 4\}$ (about these selection principles see [1] and [8]).

Proposition 2.6. The selection principle $S_1^{\varphi}(c_{2+}^0, l_2^1)$ is satisfied.

Proof. Let $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a bijection and let a sequence of double sequences $(x_{m,n,r})$ be given, where for every $r_0 \in \mathbb{N}$, $x^{(r_0)} = (x_{m,n,r_0}) \in c_{2,+}^0$ is fulfilled. Create the double sequence $y = (y_{s,t})$ in the following way:

Let arbitrary $r \in \mathbb{N}$ be fixed. Also, let $(s(r), t(r)) = \varphi^{-1}(r)$ and let $M(r) = \max\{s(r), t(r)\}$. There exists $n_0(r) \in \mathbb{N}$ such that $x_{n_0(r),n_0(r),r} \leq \frac{1}{M^2(r)(2M(r)-1)}$. Take $y_{s(r),t(r)} = x_{n_0(r),n_0(r),r}$, for $r \in \mathbb{N}$, and in that way create the double sequence $(y_{s(r),t(r)})$. It follows that $y \in c_{2,+}^0$ and $y \in l_2^1$. According to the construction of double sequence y it follows that y and $x^{(r)}$ have exactly one common element for each $r \in \mathbb{N}$. This ends the proof. \Box

Remark 2.7. According to Propositions 1.2 and 2.6 the selection principle $S_1^{\varphi}(c_{2+}^0, P-l_2^1)$ holds.

References

- [1] A. Caserta, D. Djurčić, M. Mitrović, Selection principles and double sequences II, Hacettepe J. Math. Stat., to appear.
- [2] D. Djurčić, M.R. Žižović, A. Petojević, Note on selection principles of Kočinac, Filomat 26 (2012), 1291–1295.
- [3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology Appl. 156 (2008), 46–55.

- [4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, On the class S₀ of real sequences, Appl. Math. Letters 25 (2012), 1296–1298.
- [5] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Double sequences and selections, Abst. Appl. Anal. 2012 (2012), Article ID 497594, 6 pages.
- [6] E.W. Hobson, The theory of functions of a real variable, Vol. 2, Cambridge University Press, Cambridge, UK, 2nd. edition, 1926.
- [7] K. Kayduman, C. Çakan, The Cesaro core of double sequences, Abst. Appl. Anal. 2011 (2011), Article ID 950364, 9 pages.
- [8] Lj.D.R. Kočinac, On the α_i -selection principles and games, Contem. Math. 533 (2011), 107–124.
- [9] R.F. Patterson, E. Savaş, A cathegory theorem for double sequences, Appl. Math. Letters 24 (2011), 1680–1684.
- [10] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [11] E. Savaş, (A_{σ}) -double sequence spaces defined by Orlicz function and double statistical convergence, Comput. & Math. Appl. 55 (2008), 1293–1301.